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The propagation of different types of elastic waves in a gradient-elastic medium with surface energy is considered. The dispersion 
characteristics of longitudinal and shear body waves, Rayleigh surface waves and antiplane shear surface waves, and antiplane 
shear waves in a layer are analysed in a linear approximation. Antiplane shear surface waves are also investigated taking geometrical 
non-linearity into account; their modulation instability, which leads to self-modulation and the formation of stationary envelope 
waves is also considered. © 2005 Elsevier Ltd. All rights reserved. 

The extension of the classical theory of elasticity by assigning to each point of a continuum the same 
properties as a rigid body, goes back to the classical publications [1-3]. In the generalized theories of 
a continuous medium, the interaction between two parts of a body touching an infinitesimal element 
of the surface, is characterized not only by a force vector, but also by the action of a torque vector. The 
most general and complete theories of media with a microstructure are given in the papers by Mindlin 
[4] and Eringen [5]. 

In solid-state physics, mainly in the study of materials, the concept of structural levels of deformation 
has become recognised [6, 7]. According to this concept, each point of a rigid body is regarded as a 
complex system of interacting structures at a lower structural level. 

Theories of continua with a microstructure in such hypotheses occupy an intermediate position 
between the classical theory of elasticity and solid-state physics, which rest on the idea of the existence 
of structural levels. A point mass in a continuum with a microstructure has a "reasonable" degree of 
complexity, which enables both the structure of the material (this is inaccessible for the theory of 
elasticity) and deformation waves (this is inaccessible for the study of materials) to be described. 

The theory of gradient elasticity with surface energy was proposed by Vardoulakis and Georgiadis 
[8] and is based on Mindlin's theory [4]. An isotropic microuniform material is considered in which, 
first, the relative distortion is equal to zero, second, the mass of the macromaterial of unit macrovolume 
is zero, and third, a potential energy density function is postulated, which, in addition to the classical 
components, has additional terms, namely, a Lehr deformation gradient and surface energy. 

1. BASIC EQUATIONS 

A uniform space with a microstructure is considered. The position of each structural element in this 
medium is defined by a radius vector in a Cartesian system of coordinates Oxlx2x 3. We will assume that 
the micromedium merges with the macromedium, p is the density of the macrovolume, and the 
macromedium occupies a cube with an edge of length 2h. To solve the problem, we will use the following 
postulate for the strain energy density function [8] 

1 
W = ~.Eqqerr d- gEqrF~rq + ~C(~mEqr)(~mF~rq) q- ~bm~m(F~qrF.rq) (1.1) 
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where )~ and g are standard Lam6 constants, c and b are the moduli of elasticity of the gradient medium 
bm= born, OmOm = 1, 3m denotes differentiation with respect to the coordinatexm, eqr = (3rUq + 3qUr) 
are the components of the strain tensor, U~ are the components of the displacement vector U, and the 
subscripts q, r and m take values from 1 to 3. 

The last term on the right-hand side of Eq. (1.1) relates to the surface energy, since, by Gauss' theorem 
it can be written in the form 

I 3m( bmEqrErq)d~') = b f ( EqrF.rq)( Omnm)dS  
f2 s 

where nm are the components of the unit vector of the outward normal to the surface. 
Note that the fact that the potential energy density is positive-definite follows from the constraints 

imposed on the constants of the medium 

3~ .+2g>0 ,  g > 0 ,  c > 0 ,  - 1  <b/cll2< 1 

The coefficient c depends on the dimensions of the structural components 

c = (h/4) 2 (1.2) 

As was noted above, the relative distortion is equal to zero, and hence the micro-distortion is not an 
independent function and is equal to 

l~lqr = ~qU r 

Since we have eliminated the differences between the microdensity and the macrodensity, the density 
of the medium P is identical with the density of the micromaterial. 

The Cauchy stresses and the couple stresses are respectively equal to 

T'qr = OW/bf'qr, gqrm = OW/OXqrm (1.3) 

w h e r e  )~qrm = 3qll/rm ----- OqOrUm is the gradient of the microdistortion. 
Using (1.1) and (1.3) we can express the stresses and the couple stresses in terms of the components 

of the strain tensor 

T'qr = ~'6qrEmm + 2l'l'£qr + 2gbm(OmEqr) '  gmqr = 2~[bm£qr + CEqr, m] (1.4) 

We will assume that there are no body forces and no couple body forces. From the variation in the 
potential energy, taking 5Uq as the independent variation, we can obtain the equations of motion and 
the boundary conditions in stresses in the case of a smooth boundary 

Oq(~qr = Pff[r, Oqgqrm + O~rm = I~lrm 

nr"¢rm - nqrtrnmOmktqr m - 2nr(~I ql - nqnl)blgqrrn + 

+ (nqnrnl(~lq - nlnj)Oj - nq(~Irl - nrnl)Ol)~tqrm + lnr~lrm = P m  
(1.5) 

mqnr~qr  m = R m 

A dot denotes a derivative with respect to t, 6qr is the Kronecker delta, •qr = ~qr "[- (Xqr are the components 
of the overall stress tensor, Ctrm are the relative stresses, which, in gradient theory, are "constrained" 
by the surface energy, Pm is the surface force per unit area, Rm is the couple surface force without a 
torque per unit area and I = ph2/3 is the moment of inertia of the microelement. 

Using relations (1.4) and (1.5), we obtain the equation of motion in displacements 

pU = IAU + (~, + 2g)AU + (~, +/a - gcA)rotrotU - 2~cA2U (1.6) 

or, in invariant form 

p~I = IA[I + ()~ + g - gcA)graddivU + gAU - gcA2U (1.7) 
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2. L O N G I T U D I N A L  AND S H E A R  WAVES 

Consider plane longitudinal waves propagating in an unbounded space in the direction of the Xl axis. 
The equation describing them can be obtained from Eq. (1.6) by substituting U = (U(Xl, t), 0, 0). We 
have 

( ~ +  2~I)U,I 1 - 2 g C U . I I I  1 + / t i ,  l I - p / /  = 0 (2.1) 

The solution of Eq. (2.1) will be sought in the form of a travelling harmonic wave 

u = A e  i(kx~-mt) + c.c. (2.2) 

where k is the wave number, co is the frequency and c.c. denotes the complex-conjugate quantity. 
Substituting (2.2) into Eq. (2.1), we obtain the dispersion equation 

(). + 2g)k 2 + 2gck 4 - ( I k  2 + p)0) 2 = 0 (2.3) 

from which we obtain the following explicit relation between the frequency and the wave number 

/ 2 ~ 2.2 4 ~ _ 2 g p  ~ (2.4) IC 1 + ZCCzK 
01 = k c, = , = 

where cl and c~ are the velocities with which the longitudinal and shear waves would propagate if there 
were no microstructure. 

We will denote the phase velocity by the letter C, and use a superscript to indicate the type of wave 
(l for a longitudinal wave, "c for a shear wave, R for a Rayleigh wave and SH for a shear antiplane wave). 
We will introduce the normalized frequency, the normalized wave number and the normalized phase 
velocity 

h 014 
k a = k J-c, 01d = 0 1 - - ,  Ca (2.5) 

4 %  = g 

which henceforth will be used when investigating the different types of waves. 
The phase velocity of the longitudinal wave in normalized quantities will look as follows: 

/(Cl/C,~) 2 + 2k 2 

¢ = 4  

For small values of the wave number, when the dimensions of a microelement have no effect on the 
wave process, there is no dispersion. In this case the phase velocity C t is identical with the velocity of 
a longitudinal wave in a classical elastic medium. When co ~ ~, there is no dispersion, and the asymptotic 
value of the phase velocity of a longitudinal wave is 

C t 4'3 / = ~--~cz=0.61c~, C a = 

Note that the Cosserat model of the medium generally does not describe the dispersion of the 
longitudinal wave while the Le Roux model of the medium, while describing the dispersion, leads to 
the fact that there is no asymptotic value of the phase velocity as 01 ~ ~ [9]. 

The equation describing the propagation of a plane shear wave is obtained from Eq. (1.6) by 
substituting U = (0, a)(xl, t), 0) 

~tl),l 1 --~tCD, lll  I + k:o,11 -pro = 0 (2.6) 

Similarly, as for a longitudinal wave, we obtain the dispersion relation between the frequency and 
the wave number for dimensional quantities 

l l  1 + ck  2 o) = kc~ (2.7) 
+ h2k2/3 
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The phase velocity of a shear wave, normalized using replacement (2.5), will take the following form 

Ca = •3/16 + ka z 

It is found that the dispersion characteristics, constructed form the formulae derived above and from 
the classical theory of elasticity are identical for small values of k and 0~. In this case there is no dispersion, 
and the phase velocity C ~ -- c~. When the frequency increases, the phase velocity decreases and in the 
limit as co --) co has the value 

C • ~ = -~-c~=0.43c~, C e = 1 

In Fig. 1, for a medium with the parameter r = )~/g = 3 we show graphs of the normalized frequency 
as a function of the normalized wave number of a longitudinal wave (curve 1) and a shear wave (curve 
2) and their asymptotes (the dashed straight lines). 

The dispersion equation for a longitudinal wave in normalized quantities only contains only one 
parameter r, necessary to solve this equation. The form of the dispersion curve for different values of 
r does not change, but the ratio of the phase velocities of the longitudinal and transverse waves increases 
as r increases. 

Note that, in the equation of motion in displacements (1.6) there are no terms with the parameter 
b. The velocities of the longitudinal and shear waves are also independent of this parameter, i.e. the 
additional term in the expression for the potential energy density, responsible for the surface energy, 
has no effect on the propagation of body waves in the model of the medium investigated. 

3. R A Y L E I G H  SURFACE WAVES 

SuppoSe the half-space occupies the region x2 > 0, while the axes of the xl and x3 Cartesian coordinates 
are directed along the surface. 

Consider a plane harmonic wave propagating in the direction of thexl axis, whose amplitude decreases 
exponentially with distance from the free surface x2 = 0. This kind of wave can arise if the perturbation 
causing it is independent of the variablex3. The displacement vector will have two non-zero components 
Ul(Xl, x2) and U2(Xl, x2). In an unbounded space the longitudinal and shear waves propagate 
independently of one another. The presence of a boundary, as is well known, leads to a coupling between 
these waves. 

Assuming that the x2 = 0 plane is stress-free, we have four conditions 

1~21(Xl, O) ---- O, ~22(X1, O) = O, ~1221(Xl, O) ---- O, g222(Xl, O) = 0 (3.1) 

We will split the displacement vector into potential and solenoidal components 

U = gradqo + rot~, div~ = 0 (3.2) 
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Since the wave is plane and the motion is independent of x3, only the component along the x3 axis: 
= (0, 0, ~3), in the vector potential will be non-zero. 
We apply the div operation to Eq. (1.6), and then the rot operation. As a result we obtain the following 

system of equations 

p/p = IA~ + (~, + 21)Atp - 21,tcA2~ (3.3) 

P~3 = IA~3 + IA(~3 -- IcA2~p3 (3.4) 

The solution of each of Eqs (3.3) and (3.4) will consist of two components which decrease with distance 
from the free surface 

g) = (Ae-O~+x2 + Be-a_X2)ei(kxt-o~t) + c.c. 

~3 ( De-p+x2 + Ee-P-X2) ei(kx~ -cot) = + e.c. 

(3.5) 

z±=  + 1 - ~ . - 2 1 +  10) 2+ ff(~.+ 21-10)2)2+ 81cp0) 2) 

g/~-~Z JZ2+4c10)2 ' Z =  I__/0) 2 
~± = 4 " ~ c  ' g = 1 

where A, B, D and E are amplitude functions. 
The boundary conditions, expressed in terms of the components of the displacement vector, will be 

as follows: 

(~21(Xl, 0) = 101,2 + 1(U2, l + UI.2) -1cA(U2, 1 + UI,2) ~- 0 

(~22(Xl, 0) = 102 ,2+~, (U1,  I + U2,2)+21U2,2-21cAU2, 2 = 0 

1221(Xt, 0) = ].l.b2(U2, l + UI,2) -I- 1c(U2,  12 + UI,22) = 0 
i(3.6) 

1222(Xl, 0)  = 21b2U2, 2 + 21cU2,22 = 0 

Note that the boundary conditions do not contain the components bl and b3, and hence we can assume 
that bl = b3 = 0 and b2 = b ~ 0. 

Substituting expressions (3.5) into (3.2) and using conditions (3.6), we obtain a linear homogeneous 
system of four equations with unknown amplitude functionsA, B, D and E. As is well known, this system 
has a solution if and only if its determinant is equal to zero. This condition will also be the dispersion 
relation for a Rayleigh wave. 

In order to write the dispersion relation in terms of the normalized frequency and normalized wave 
number (2.5), the following quantities are necessary, with which it is more convenient to operate 
henceforth 

b = 6+if'c, Z+_d Z±C (3.7) bd = "~CC' (Y±d - = 

Then 

2 2 2 
O~+_d = ~ ,  p±d = ~ 

Z+d_ = --~t +Old+ +2--0)d +~0)d (3.8) 

g• if'Z2 3 2 2 C~+_d = , g = +~COd, Z = 1- (0  a 
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The dispersion relation in normalized coordinates will take the following form 

3 (CR)2 ~, 
-2z-a-i  d 

IX+a(coa 2 - 2 - 2z+a) 

IX2+a( b d - IX+d) 

-2IX+a(b a - IX+a) 

3 n 2  
- 2 z + d - N ( C  d) - 

2 
a_d(o~ d - 2 - 2z_d) 

Ix2_d( b d - IX_d ) 

-2IX_a(b a - (x_a) 

-P+d(1 + g)  

3 n 2  

2 
-kdP+d(ba - P+d) 

2 2 
(ka + P+dXba - P+d) 

- P - d (  1 - g)  

3 R2  

2 
- k d P - a ( b d -  P-d) 

(k 2 + p2_  (ba - p -a l  

= 0 ( 3 . 9 )  

As in the case of a longitudinal wave, to solve the dispersion equation it is necessary to specify the 
ratio r = )~/g. In addition we must assign a value to the parameter  be. 

Dispersion curves were drawn for media with different combinations of values of r and ha. It turned 
out that the dispersion curves for media with a fixed value of the parameter  r and different values of 
b d were so close to one another that their graphs merge. Hence, we can assume that the introduction 
of the additional term into the expression for the potential energy density, corresponding to the surface 
energy, has little effect on the nature of the propagation of a Rayleigh surface wave. 

In Fig. 2 we show dispersion curves of the normalized frequency as a function of the normalized wave 
number for bd = 0.5 and different values of r. They all have a common asymptote. 

We can conclude from the dispersion curves that the velocity of a Rayleigh wave depends on the 
frequency, i.e. there is dispersion. If we expand the dispersion equation in a Taylor series in the neigh- 
bourhood of co = 0, it is easy to show that the value of the phase velocity C R is identical with the value 
of the phase velocity of a Rayleigh surface wave in the classical theory of elasticity. In a similar way we 
can find the asymptotic value of the phase velocity as e0 ~ oo for materials with any parameters r and 
bd. We present the equation 

R 14 R j2 R 10 R 8 R 6 R 4 R 2 
C a - 1 8 C  a + 1 2 3 C  a - 4 0 6 C  a +757C a - 7 4 8 C  a +356C a - 6 4  = 0 

the root of which is the asymptotic value of the normalized phase velocity. Thus, as o~ ~ oo 

R 
C n =  0.73c~ = 0.32cr, C a =0.73 

4. T H E  S H E A R  A N T I P L A N E  (SH)  S U R F A C E  WAVE 

We will consider antiplane shear (i.e. horizontally polarized or SH) motions in a gradient-elastic half- 
space with surface energy. This type of wave in the model of the medium investigated was considered 
for the first time by Vardoulakis and Georgiadis [8]. As in the previous problem, suppose the half-space 
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occupies the region --~ < Xl, x3 < ~,  x2 --- 0. Particles of the medium are displaced in the direction of 
the x3 axis. In this case the problem is two-dimensional, and the solution depends only on xl and x2. 

We will also assume that bl = b3 = 0, b2 = b ~ 0. For the case of SH-motion considered we have 
U = (0, 0, W(X1, X2, t)). 

The equation describing the surface SH-wave is identical with the equation for the solenoidal 
component of the Rayleigh surface wave (3.4) (we must simply replace 03 by w). 

The boundary conditions in displacements have the form 

(Y23(Xl, O) = IW2+~W,2--~.ICW,211--~.tCW222 = 0 

~223(Xl, O) = ~CW,22 + ~bw,2 = 0 
(4.1) 

The solution of the equation of motion consists of two decreasing components 

W = [Ae-P+X 2 + Be-P_X2]ei(kxl-cot) + c.c. (4.2) 

where A and B are amplitude functions, and p+ and p_ satisfy relations (3.5). 
The following dispersion relation was obtained in [8] 

cs+e k ~ - ~ - 2  2 2 2 2 2 2 2 _ e ) = O  
(Y+d + ( Y - d ~ d  + (Y-d -- bd(~+d + (4.3) 

from which one can express the wave number in terms of the frequency 

l 2 
= b 2 3 0~d, ~ 2 kd e -Z+~TWva-~ -be )  (4.4) 

Note that relation (4.4) is not satisfied for any COd. The start of the range of real frequencies defines 
the cutoff frequency, which can be found from the condition 

2_ 2 kd +d = 0 (4.5) 

Note that the greater the value of the parameter representing the surface energy bd the wider the 
frequency range in which these waves can exist. 

In Fig. 3 we show graphs of the normalized frequency as a function of the wave number for media 
with different values of the parameter be. 

For this problem the additional term in the expression for the potential energy density enables us to 
prove theoretically that surface SH-waves exist when a uniform medium occupies the half-space. These 
waves are observed experimentally, for example, in crystal acoustics [10], but they cannot be described 
within the framework of the classical theory of elasticity. The case considered is a confirmation of the 
influence of the term in the expression for the potential energy density corresponding to the surface 
energy. 
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Surface SH-waves in a half-space of homogeneous material possess dispersion. The dispersion relation 
in normalized coordinates is independent of the properties of the medium, and hence for all the media 
the dispersion curves will be similar to the curve shown in Fig. 3. When co ~ ~, the asymptotic value 
of the phase velocity is equal to 

C TM = @c~--0.43cx, Cd TM = 1 

5. THE P R O P A G A T I O N  OF SH-WAVES IN A LAYER 

We will consider shear antiplane wave motions in a layer in the direction of the Xl axis. The layer is 
bounded by the planes x2 = 0 and x2 = d. The problem is two-dimensional, and the solution depends 
only on xl and x2. We will also assume that b 1 = b 3 = 0, b 2 = b ~ 0. For SH-motions in the layer we 
have 

U l -- U 2 -- O, U 3 = w(x 1, x 2, t ) ~ 0  

The equation of motion will be the same as for surface SH-waves but there will be twice the number 
of boundary conditions, since there is a second boundary x2 = d on which conditions similar to (4.1) 
are imposed. 

The solution of the equation of motion will consist of four components 

. .  ~1 i(kx~-tot) 
w = [As in (Px  z) + B c o s ( P x  2) + Dsh(p_x  2) + lzcntp_x2)le + c.c. 

p = 4r-~+_-k 2 

whereA, B, D and E are amplitude functions. 
Introducing the normalized quantities (3.8), similar to the previous case, we arrive at the following 

dispersion equation 

3 2 
~tOaPap_d(1 - cos(PaHd)Ch(P_dHa) ) + sin(PdHa) sh(p_dHd) x 

(:( 4 / 
x - k  1 - T t O d + O 3  a - l+ i -~a- - - i -6 tOa+O~d+bdg  = 0 (5.1) 

= ed-c,  Ha = d/,/-c 

Dispersion relation (5.1) in normalized coordinates, as in the previous problem, is independent of 
the properties of the medium. In Fig. 4 we show graphs of the normalized frequency against the 
normalized wave number for d -- 10h and be = 0.5. 

Analysis shows that the zeroth mode of the shear wave in the layer is identical in its dispersion 
properties to the shear wave in an unbounded gradient-elastic medium given by (2.7). 

The asymptotic values of the phase velocities of all modes in the layer are identical with the asymptotic 
value of the phase velocity of shear and surface SH-waves. 

6. N O N - L I N E A R  SURFACE SH-WAVES 

We have already considered surface antiplane shear waves in Section 4. Below we investigate the same 
type of waves, but taking the geometrical non-linearity into account. Unlike the linear problems, we 
will obtain the equations of motion using the exact expression for the components of the strain tensor 

I~qr = (~rUq- l -~qUr- I -~rUm~qUm) ,  r , q , m  = 1,2,3 (6.1) 

Substituting expressions (6.1) into relation (1.1) and taking expressions (1.3) into account, we obtain 
non-linear relations for the components of the stress tensor and the couple stress tensor 

~qr ~- ~'~)qr~'mm -I- 2~teqr + 2~tbm(~m£qr ) 

~mqr -~ 2kt[bm£qr + CEqr, m q" (bm£qn + Cf~qn, m)Ur, n] 
(6.2) 
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Further, as in Section 4, we have U = (0, 0, w(x> x2, t)). Substituting expressions (6.2) into Eqs (1.5) 
we obtain an equation for the antiplane shear components of the displacement 

V2W - CV4W 4" l~-lv2"I~--CX21;I) = C{ w,,,,,(2w21 + w22)+ w,,,22(3wZl + 3w, 2) + 

4" 2WIW,z(WI222 4" W,lll 2) 4" W,2222(W21 4" 2W22) 4- Wan(12wlwl I + 6w,2w 12 4" W,lW,2 z) + 

+ W, l12(6W,2Wll + 16W, lW,l 2 + 7w,2w,22) + w,122(7W,lW,i 1 + 16w,2w,l 2 + 6W, lW,22) + 

+ W ZZZ(6W, IW12 + lZw,2w 22 + w,2w 11) + W,ll(4W211 + 1 lw212 + 2 w,22) + 
(6.3) 

2 
+ w22(4w222 + llwZ12+w211)}+b{w,,12(3w21 +w.2)+4w,,22wAw.z+ 

+W,222(3W~2+W~1)+6W,lW, l,W, n2+2W,2W,l,W,22+4W,2wZ12+6W,,W12W22+6W2W~22} 

The conditions on the boundary (4.1) in displacements take the following form 

W,2 -- ¢W,211 -- CW,222 + I~-11;1) 2 = C{W,IIIW,IW2 + W,II2(W21 + 2wZz) + w,122wiw,2 + 

2 5w,2w2 2 + 3w,w,,2w22 + 4w 2w222 } + + W,222(W21 4- 2w22) + W,2W, I 1 + 3W,lW,,,w,,2 + 

+ b{w.zzwZl + 3w 22w22 + 2w, nw,zw.12} 

2 + 2W,22W22 } + b{w32 + w,2w,2 } - c w 2  2 - b W 2  = C{WlW2W12+W,22W,l  

(6.4) 

As already pointed out, in the linear case a solution of the dispersion equation exists if the frequency 
of the wave exceeds the cutoff frequency, which is found from Eq. (4.5). In Fig. 5 the solution of the 
above equation is represented by curve 1. 

We again consider the linear case, when the solution of the equation of motion consists of two 
components (4.2). Using conditions (4.1), we conclude that their ratio 

A e  P+XZel(kxl cot)  p_(j2+ -(P+-P-)X2 
= 2 e (6.5) 

Be-P_X2ei(kxt - ~ot) P + (Y- 

has a minimum value on the boundary x 2 = 0, since p_ > p+. The ratio (6.5) decreases as the depth x 2 
increases. 

Suppose that on the surface the first component is, for example, 20 times greater than the second; 
points on curve 2 in Fig. 5 satisfy this condition. In the external region of curve 2 the ratio of the two 
components is always greater than 20. In this case the first component in expression (4.2) predominates 
over the second, which can henceforth be omitted. 
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The solution in the non-linear case will be sought in the form of a single harmonic with a slowly varying 
complex amplitude A 

W(Xl, x2, t) = A(~ ,  ~)e-P÷X2e i(kx'-°t)  + c.c. (6.6) 

where 

dp+ "1 2 t 
= e x I - "O.t + i'-d'~x2), "C = 

dp+_ 1 Ik 'J3°)dOa)*], 16 2 
0 = ----O+d+ 1 

3 

1) ,  ---- 
( 413[ 4 )Cz(Odk d)~ 

2 2 2 2 2 ~)-1/2) 
Od) C + ( k  d - b d + )~)( 1 - b d O d ( b  d - 

~ .  = d o / d k  is the group velocity and e is a small parameter. 
Substituting expression (6.6) into Eq. (6.3) and equating coefficients of different powers of the small 

parameter e to zero, we obtain for e3 a non-linear parabolic Schr6dinger equation [11, 12], describing 
the evolution of the complex amplitude of the quasi-harmonic wave 

~A{{  + i A z -  IX[AI2A = 0 (6.7) 

where 

f24t3 2 ~  "h-l .2k6 4 2 2 4 6 
IX = ~-~c c t~Od) ( d--33kdP+d--  17kdp+d +42p+d + 

4 2 3 27pS+d))e-2P+X2 + bd(9kdP+ d - 6kdP+d -- 

~3 = \-~c~ a) 1-  ~,~"-~ff j c, k 4 g2 ) J 

It is well known from the theory of non-linear waves that under certain conditions a quasi-harmonic 
wave is unstable to splitting into individual wave packets (modulation instability). To answer the question 
of whether modulation instability of shear surface waves is possible we will use Lighthill's criterion [12], 
according to which modulation instability is possible in a system in which 

Ix~ < 0 (6.8) 
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It should be noted that the product c~13 is expressed solely in terms of normalized variables, and hence 
the region of modulation instability will be similar to that derived below for all materials. In Fig. 5 the 
required region in the plane of the parameters 0~d and ba is shown hatched. 

For different values of the dimensionless parameter bd there will be one, two or three intervals of 
the frequencies o~a for which modulation instability occurs. It should be noted that curves 1 and 2 in 
Fig. 5 approach one another as ba increases to unity, but they do not merge. Hence, there is a region 
of modulation instability between them. 

In order to determine the form of the wave packets into which a surface shear wave splits as a result 
of modulation instability, we will analyse stationary envelope waves. We will introduce a real amplitude 
a and a real phase ~p: A = ad 'p instead of a complex amplitude A. Then, Eq. (6.7) can be rewritten in 
the form of a system of hydrodynamic-type equations 

~a 2 Oa2 G 
= o,  

3G 3G ~2 3 (132a l  &~3a 2 
+ ) : o 

(6.9) 

where ~ = 213 is the dispersion parameter and (z = - 2 a  is the non-linearity parameter. 
We will seek a solution of system (6.9) which depends on the single variable 1] = { - V'c, where 

V = const is the velocity of the stationary wave. In this case the phase of the wave G can be expressed 
in terms of its amplitude a 

G = Q/a z + V (6.10) 

where Q is the constant of integration, while the change in the amplitude is described by the non-linear 
equation of an harmonic oscillator 

d2a/drl2 + mla  3 -3 + m2a + m3a = 0 

m I = V21~ 2, m 2 = ~/~,  m 3 =-d2/[]  2 
(6.11) 

Note that the coefficient of a is always positive while the coefficient of a -3 is always negative. The 
sign of the coefficient of a 3 can be positive or negative depending on the properties of the material and 
the frequency band. A positive value of this coefficient will correspond to the regions of modulation 
instability. 

Changing to the new variables 

; = 4c~ffl, f = ~ a  (6.12) 

we will write the first integral of Eq. (6.11) in the form 

2 3 ( d f l d ~ ) 2 + H ( f )  = E; Fl(f)  = f 2 +  f 4 1 2 - D f - 2 ,  D = m3m21m I 

where E is the constant of integration. 
Analytical solutions of Eq. (6.11) have been obtained and analysed in [13]. The amplitude of the 

envelope waves is described by the expression 

_ 2  . 1 +s  2 
f (~)  = + ~ + 2A 0 - 3 s  2 - 2Aosn2(ko~, s) 

RI - R2 R ~ I  - R3 2 RI - R2 
A°  = 2 ' k° = ~ , s = R I - R 3  

(6.13) 

Here Ao is the amplitude of the stationary envelope wave, k0 is the analogue of the wave number and s 
is the modulus of the elliptic function. We have denoted the roots of the polynomial E R  - R 2 - R3/2 + D 
by R i (R 3 _< R 2 < R1). 
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Solution (6.13) describes periodic motions, the form of which, in general, is non-sinusoidal and is 
determined by the modulus of s, s s (0, 1/2). The period of quasi-harmonic oscillations is equal to 
T = 2K(s)/ko, where K(s) is the complete elliptic integral of the first kind. 

The periodic sequence of wave packets, into which the shear wave is split as a result of modulation 
instability, is shown qualitatively (for s 2 = 1/2) in Fig. 6. 

In the special case when D -- 0, Eq. (6.11) is a Duffing equation, the solution of which in the variables 
(6.12). 

f (~)  = ,]- 1 + d l  + 2Ecn((1 + 2 e ) l l 4 ~ , s )  

is close to sinusoidal when s 2 ~ 0 and has a saw-tooth form when s 2 ~ 1/2. 
Hence, a quasi-harmonic shear wave, modulated periodically, is described by the expression 

V -p+x 2 i (kx  I - cot + {p) 
w(x l, x 2) = -+ Ge ~ + c.c. 

where 

V 2Qafdrl  
cp = ~-¢~ rl - V---T-j G-- 5 

and G is the radical on the right-hand side of Eq. (6.13) (~ = Vq/(2~)). 
Stationary envelope waves can also formally exist when there is no modulation instability (this situation 

was considered in [14]), but the mechanism by which they are formed is still not clear. 

7. C O N C L U S I O N  

Thus, at zero frequency for longitudinal, shear and SH-waves in a layer and for surface waves, the values 
of the phase velocities are identical with the corresponding values of the phase velocities, calculated 
using the classical theory of elasticity. As also in the classical theory of elasticity, the dispersion curves 
of the zeroth mode of an antiplane (SH) wave in a layer and a body shear wave coincide with one another. 
The dispersion equations for all the types of waves considered here can be written in terms of the 
normalized frequency and normalized wave number (2.5). The dispersion relations obtained, in addition, 
can only include the parameters r = ~/~t and b d. Because of the additional term in the expression for 
the potential energy density, with which the parameter bd is connected, the existence of antiplane (SH) 
surface waves is proved. This term has only a weak effect on the dispersion relations of the other types 
of waves. Although the parameter r introduces certain quantitative changes into the dispersion curves, 
their form remains unchanged. 

We will present the asymptotic values of the phase velocities for all the wave modes considered, 
expressed in terms of the velocity of the shear body wave, known from the classical theory of elasticity 
(the values corresponding to the classical theory of elasticity are shown in parentheses) 
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In Fig. 7 we show curves of the normalized phase velocity as a function of the normalized frequency 
for a longitudinal wave (curve 1), a shear wave (curve 2) and a Rayleigh wave (curve 3) and their 
asymptotes for ba = 0.5 and r = 3. In the scale of Fig. 7 the curve for the surface SH-wave coincides 
with curve 2. 

If the non-linear terms are taken into account in the equation for the surface antiplane shear motion, 
at certain frequencies this can lead to modulation instability and the existence of stationary envelope 
waves. 
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